Effect of quantitative trait loci for seed shattering on abscission layer formation in Asian wild rice Oryza rufipogon
نویسندگان
چکیده
Asian cultivated rice Oryza sativa L. was domesticated from its wild ancestor, O. rufipogon. During domestication, the cultivated rice lost its seed-shattering behaviour. Previous studies have shown that two major quantitative trait loci (QTLs; qSH1 and sh4) are responsible for the seed-shattering degree. Here, we produced introgression lines carrying non-functional alleles from O. sativa 'Nipponbare' at the two major QTLs in the genetic background of wild rice O. rufipogon W630, and examined the effects of the two QTLs on seed shattering and abscission layer formation. The introgression lines, with Nipponbare alleles at either or both loci, showed complete or partial abscission layer formation, respectively, indicating that other unknown loci might be involved in enhancing seed shattering in wild rice. We detected a single QTL named qSH3 regulating seed-shattering degree using an F2 population between Nipponbare and the introgression line carrying Nipponbare alleles at the two QTLs. Although we generated an introgression line for qSH3 alone, no effects on seed shattering were observed. However, a significant effect on seed-shattering degree was observed for the introgression line carrying Nipponbare alleles at qSH3 and the two QTLs, suggesting an important role of qSH3 on seed shattering in coordination with the two QTLs.
منابع مشابه
Allelic interaction at seed-shattering loci in the genetic backgrounds of wild and cultivated rice species.
It is known that the common cultivated rice (Oryza sativa) was domesticated from Asian wild rice, O. rufipogon. Among the morphological differences between them, loss of seed shattering is one of the striking characters specific for the cultivated forms. In order to understand the genetic control on shattering habit, QTL analysis was carried out using BC(2)F(1) backcross population between O. s...
متن کاملMapping of seed shattering loci provides insights into origin of weedy rice and rice domestication.
Seed shattering is an important trait that distinguishes crop cultivars from the wild and weedy species. The genetics of seed shattering was investigated in this study to provide insights into rice domestication and the evolution of weedy rice. Quantitative trait locus (QTL) analysis, conducted in 2 recombinant inbred populations involving 2 rice cultivars and a weedy rice accession of the sout...
متن کاملSHAT1, A new player in seed shattering of rice.
A major event in domestication of crops was the elimination of seed shattering, so that instead of falling to the ground, seeds stayed on the stalk until farmers could harvest them (Doebley, 2006). The SH4 (for grain shattering quantitative trait locus on chromosome4) and qSH1 (for quantitative trait locus of seed shattering on chromosome1) transcription factor genes are known to play key roles...
متن کاملSequence polymorphisms in wild, weedy, and cultivated rice suggest seed-shattering locus sh4 played a minor role in Asian rice domestication
The predominant view regarding Asian rice domestication is that the initial origin of nonshattering involved a single gene of large effect, specifically, the sh4 locus via the evolutionary replacement of a dominant allele for shattering with a recessive allele for reduced shattering. Data have accumulated to challenge this hypothesis. Specifically, a few studies have reported occasional seed-sh...
متن کاملGenetic control of seed shattering in rice by the APETALA2 transcription factor shattering abortion1.
Seed shattering is an important agricultural trait in crop domestication. SH4 (for grain shattering quantitative trait locus on chromosome 4) and qSH1 (for quantitative trait locus of seed shattering on chromosome 1) genes have been identified as required for reduced seed shattering during rice (Oryza sativa) domestication. However, the regulatory pathways of seed shattering in rice remain unkn...
متن کامل